Qu'est-ce qu'une propriété modulative? (50 exemples)



Le propriété modulative c'est ce qui permet des opérations avec des nombres sans altérer le résultat de l'égalité. Ceci est particulièrement utile plus tard dans l’algèbre, car la multiplication ou l’ajout de facteurs qui ne modifient pas le résultat permet de simplifier certaines équations.

Pour l'addition et la soustraction, l'ajout de zéro ne modifie pas le résultat. Dans le cas de la multiplication et de la division, multiplier ou diviser par un ne change pas non plus le résultat.

Les facteurs zéro pour la somme et un pour la multiplication sont modulaires pour ces opérations. Les opérations arithmétiques ont plusieurs propriétés en plus de la propriété modulative, qui contribuent à la résolution de problèmes mathématiques.

Opérations arithmétiques et propriété modulative

Les opérations arithmétiques sont l'addition, la soustraction et la division. Nous travaillerons avec l'ensemble des nombres naturels.

Somme

La propriété appelée élément neutre nous permet d'ajouter un addend sans modifier le résultat. Cela nous dit que zéro est l'élément neutre de la somme.

En tant que tel, il est dit être le module de la somme et donc le nom de la propriété modulative.

Par exemple:

(3+5)+9+4+0 = 21

4+5+9+3+0 = 21

2+3+0 = 5

1000+8+0 = 1008

500+0= 500

233+1+0= 234

25000+0= 25000

1623+2+0= 1625

400+0= 400

869+3+1+0= 873

78+0= 78

542+0= 542

36750+0 = 36750

789+0 = 789

560+3+0= 563

1500000+0= 1500000

7500+0= 7500

658+0= 658

345+0= 345

13562000+0= 13562000

500000+0= 500000

322+0= 322

14600+0= 14600

900000+0= 900000

La propriété modulative est également remplie pour les nombres entiers:

(-3)+4+ (-5)= (-3)+4+ (-5)+0

(-33)+(-1) = (-33)+(-1)+0

-1+35 = -1+35+0

260000+(-12) = 260000+(-12)+0

(-500)+32+(-1) = (-500)+32+(-1)+0

1750000+(-250)= 1750000+(-250)+0

350000+(-580)+(-2) = 350000+(-580)+(-2)+0

(-78)+(-56809) = (-78) +(-56809)+0

8+5+(-58) = 8+5+(-58)+0

689+854+(-78900) = 689+854+(-78900)+0

1+2+(-6)+7= 1+2+(-6)+7+0

Et, de même, pour les nombres rationnels:

2/5+3/4 = 2/5+3/4+0

5/8+4/7= 5/8+4/7+0

½+1/4+2/5= ½+1/4+2/5+0

1/3+1/2 = 1/3+1/2+0

7/8+1=7/8+1+0

3/8+5/8=3/8+5/8+0

7/9+2/5+1/2= 7/9+2/5+1/2+0

3/7+12/133=3/7+12/133+0

6/8+2+3=6/8+2+3+0

233/135+85/9=233/135+85/9+0

9/8+1/3+7/2=9/8+1/3+9/8+0

1236/122+45/89=1236/122+45/89+0

24362/745+12000=24635/745+12000+0

Aussi pour les irrationnels:

e + √2 = e + √2 + 0

√78+1=√78+1+0

√9+√7+√3=√9+√7+√3+0

√7120 + e = √7120 + e + 0

√6+√200=√6+√200+0

√56+1/4=√56+1/4+0

√8+√35+√7= √8+√35+√7+0

√742+√3+800= √742+ √3+800+0

V18 / 4 + √7 / 6 = √18 / 4 + √7 / 6 + 0

√3200+√3+√8+√35 = √3200+√3+√8+√35+0

√12 + e + √5 = √12 + e + √5 + 0

√30 / 12 + e / 2 = √30 / 12 + e / 2

√2500+√365000 = √2500+√365000+0

√170 + √13 + e + √79 = √170 + √13 + e + √79 + 0

Et de même pour tous les réels.

2,15+3=2,15+3+0

144,12+19+√3 = 144,12+19+√3+0

788500+13,52+18,70+1/4 = 788500+13,52+18,70+1/4+0

3,14+200+1 = 3,14+200+1+0

2,4+1,2+300 = 2,4+1,2+300+0

√35+1/4 = √35+1/4+0

e + 1 = e + 1 + 0

7,32+12+1/2 = 7,32+12+1/2+0

200+500+25,12 = 200+500+25,12+0

1000000+540,32+1/3 = 1000000+540,32+1/3 +0

400+325,48+1,5 = 400+325+1,5+0

1200+3,5 = 1200+3,5+0

Soustraction

En appliquant la propriété modulative, comme par ailleurs, le zéro ne modifie pas le résultat de la soustraction:

4-3= 4-3-0

8-0-5= 8-5-0

800-1 = 800-1-0

1500-250-9 = 1500-250-9-0

Il est rempli pour les entiers:

-4-7=-4-7-0

78-1 = 78-1-0

4500000-650000 = 4500000-650000-0

-45-60-6=-45-60-6-0

-760-500 = -760-500-0

4750-877 = 4750-877-0

-356-200-4 = 356-200-4-0

45-40 = 45-40-0

58-879 = 58-879-0

360-60 =360-60-0

1250000-1 = 1250000-1-0

3-2-98 = 3-2-98-0

10000-1000 = 10000-1000-0

745-232 = 745-232-0

3800-850-47 = 3800-850-47-0

Pour les rationnels:

3/4-2/4 = 3/4-2/4-0

120/89-1/2 = 120/89-1/2-0

1/32-1/7-1/2 = 1/32-1/7-1/2-0

20/87-5/8 = 20/87-5/8-0

132/36-1/4-1/8 = 132/36-1/4-1/8

2/3-5/8 = 2/3-5/8-0

1/56-1/7-1/3 = 1/56-1/7-1/3-0

25/8-45/89 = 25/8-45/89 -0

3/4-5/8-6/74 = 3/4-5/8-6/74-0

5/8-1/8-2/3 = 5/8-1/8-2/3-0

1/120-1/200 = 1/120-1/200-0

1/5000-9/600-1/2 = 1/5000-9/600-1/2-0

3/7-3/4 = 3/7-3/4-0

Aussi pour les irrationnels:

Π-1= Π-1-0

e-√2 = e-√2-0

√3-1=√-1-0

√250-√9-√3=√250-√9-√3-0

√85-√32 = √85-√32-0

√5-√92-√2500=√5-√92-√2500

√180-12=√180-12-0

√2-√3-√5-√120= √2-√3-√5-120

15-√7-√32= 15-√7-√32-0

V2 / √5-√2-1 = √2 / √5-√2-1-0

√18-3-√8-√52 = √18-3-√8-√52-0

√7-√12-√5 = √7-√12-√5-0

√5-e / 2 = √5-e / 2-0

√15-1 = √15-1-0

√2-√14-e = √2-√14-f-0

Et, en général, pour les vrais:

π -e = π-e-0

-12-1,5 = -12-1,5-0

100000-1/3-14,50 = 100000-1/3-14,50-0

300-25-1,3 = 300-25-1,3-0

4,5-2 = 4,5-2-0

-145-20 = -145-20-0

3,16-10-12 = 3,16-10-12-0

π-3 = π-3-0

π/2- π/4 = π/2- π/4-0

325,19-80 = 329,19-80-0

-54,32-10-78 = -54,32-10-78-0

-10000-120 = -10000-120-0

-58,4-6,52-1 = -58,4-6,52-1-0

-312,14-√2 = -312,14-√2-0

La multiplication

Cette opération mathématique a également son élément neutre ou sa propriété modulative:

3x7x1 = 3 × 7

(5 × 4) x3 = (5 × 4) x3x1

Quel est le numéro 1, car il ne modifie pas le résultat de la multiplication.

Cela est également vrai pour les entiers:

2 × 3 = -2x3x1

14000 × 2 = 14000x2x1

256x12x33 = 256x14x33x1

1450x4x65 = 1450x4x65x1

12 × 3 = 12x3x1

500 × 2 = 500x2x1

652x65x32 = 652x65x32x1

100x2x32 = 100x2x32x1

10000 × 2 = 10000x2x1

4x5x3200 = 4x5x3200x1

50000x3x14 = 50000x3x14x1

25 × 2 = 25x2x1

250 × 36 = 250x36x1

1500000 × 2 = 1500000x2x1

478 × 5 = 478x5x1

Pour les rationnels:

(2/3) x1 = 2/3

(1/4) x (2/3) = (1/4) x (2/3) x1

(3/8) x (5/8) = (3/8) x (5/8) x1

(12/89) x (1/2) = (12/89) x (1/2) x1

(3/8) x (7/8) x (6/7) = (3/8) x (7/8) x (6/7) x 1

(1/2) x (5/8) = (1/2) x (5/8) x 1

1 x (15/8) = 15/8

(4/96) x (1/5) x (1/7) = (4/96) x (1/5) x (1/7) x1

(1/8) x (1/79) = (1/8) x (1/79) x 1

(200/560) x (2/3) = (200/560) x 1

(9/8) x (5/6) = (9/8) x (5/6) x 1

Pour les irrationnels:

e x 1 = e

√2 x √6 = √2 x √6 x1

√500 x 1 = √500

√12 x √32 x √3 = V√12 x √32 x √3 x 1

√8 x 1/2 = √8 x 1/2 x1

√320 x √5 x √9 x √23 = √320 x √5 √9 x √23 x1

√2 x 5/8 = √2 x5 / 8 x1

√32 x √5 / 2 = √32 + √5 / 2 x1

e x √2 = e x √2 x 1

(π / 2) x (3/4) = (π / 2) x (34) x 1

π x √3 = π x √3 x 1

Et enfin pour les vrais:

2,718×1= 2,718

-325 x (-2) = -325 x (-2) x1

10000 x (25,21) = 10000 x (25,21) x 1

-2012 x (-45,52) = -2012 x (-45,52) x 1

-13,50 x (-π / 2) = 13,50 x (-π / 2) x 1

-π x √250 = -π x √250 x 1

-√250 x (1/3) x (190) = -√250 x (1/3) x (190) x 1

- (√3 / 2) x (√7) = - (√3 / 2) x (√7) x 1

-12,50 x (400,53) = 12,50 x (400,53) x 1

1 x (-5638.12) = -5638.12

210,69 x 15,10 = 210,69 x 15,10 x 1

Division

L'élément neutre de la division est comme dans la multiplication, le nombre 1. Une quantité donnée divisée par 1 donnera le même résultat:

34÷1=34

7÷1=7

200000 ÷ 1 = 200000

ou ce qui est pareil:

200000/1 = 200000

Ceci est vrai pour chaque entier:

8/1 = 8

250/1 = 250

1000000/1 = 1000000

36/1 = 36

50000/1 = 50000

1/1 = 1

360/1 = 360

24/1 = 24

2500000/1 = 250000

365/1 = 365

Et aussi pour chaque rationnel:

(3/4) ÷ 1 =3/4

(3/8) ÷ 1 = 3/8

(1/2) ÷ 1 = 1/2

(47/12) ÷ 1 = 47/12

(5/4) ÷ 1 = 5/4

 (700/12) ÷ 1 = 700/12

(1/4) ÷ 1 = 1/4

(7/8) ÷ 1 = 7/8

Pour chaque nombre irrationnel:

π/1 = π

(π/2) / 1 = π/2

(√3/2) / 1 = √3/2

√120/1 = √120

√8500 / 1 = √8500

√12 / 1 = √12

(π/4) / 1 = π/4

Et, en général, pour chaque nombre réel:

3,14159/1=3,14159

-18/1 = -18

16,32 ÷ 1 = 16,32

-185000,23 ÷ 1 = -185000,23

-10000,40 ÷ 1 = -10000,40

156,30 ÷ 1 = 156,30

900000, 10 ÷ 1 = 900000,10

1,325 ÷ 1 = 1,325

La propriété modulative est essentielle dans les opérations algébriques, puisque l’artifice de multiplier ou de diviser par un élément algébrique dont la valeur est 1 ne modifie pas l’équation.

Cependant, si vous pouvez simplifier les opérations avec les variables afin d'obtenir une expression plus simple et de résoudre plus facilement les équations.

En général, toutes les propriétés mathématiques sont nécessaires à l'étude et au développement d'hypothèses et de théories scientifiques.

Notre monde est rempli de phénomènes constamment observés et étudiés par les scientifiques.

Ces phénomènes sont exprimés avec des modèles mathématiques pour faciliter leur analyse et leur compréhension ultérieure.

De cette façon, les comportements futurs peuvent être prédits, entre autres, ce qui apporte de grands avantages pour améliorer le mode de vie des gens.

Références

  1. Définition des nombres naturels. Récupéré de: definicion.de.
  2. Division des nombres entiers. Récupéré à partir de: vitutor.com.
  3. Exemple de propriété modulative. Extrait de: ejemplode.com.
  4. Les nombres naturels Extrait de: gcfaprendelibre.org.
  5. Mathématiques 6. Récupéré de: colombiaaprende.edu.co.
  6. Propriétés mathématiques Extrait de: wikis.engrade.com.
  7. Propriétés de la multiplication: associative, commutative et distributive. Extrait de: portaleducativo.net.
  8. Propriétés de la somme. Extrait de: gcfacprendelibre.org.